
THE INTEGRATED ALARM SYSTEM OF THE ALMA OBSERVATORY

A. Caproni†, E. Schmid‡, European Organisation for Astronomical Research in the Southern
Hemisphere (ESO), Garching, Germany

Abstract

ALMA is composed of many hardware and software
systems each of which must be properly functioning to
ensure the maximum efficiency. Operators in the control
room, follow the operational state of the observatory by
looking at a set of non-homogeneous panels. In case of
problems, they have to find the reason by looking at the
right panel, interpret the information and implement the
counter-action that is time consuming so after an investi-
gation, we started the development of an integrated alarm
system that takes monitor point values and alarms from
the monitored systems and presents alarms to operators in
a coherent, efficient way. A monitored system has a hier-
archical structure modelled with an acyclic graph whose
nodes represent the components of the system. Each node
digests monitor point values and alarms against a provid-
ed transfer function and sets its output as working or non
nominal, taking into account the operational phase. The
model can be mapped in a set of panels to increase opera-
tors' situation awareness and improve the efficiency of the
facility.

ARCHITECTURE PRINCIPLES
During the development study, we have found that each

monitored system has a hierarchical structure that can be
modelled with an acyclic graph whose nodes represent the
components of the system [1]. Each node, or component,
of the monitored system can be working properly or be in
a non-nominal state. In the latter case, the error could or
could not generate an alarm to catch the attention of the
operator or engineer. In fact, depending on the particular
operational phase, an error could be safely ignored with-
out distracting the operators. This is for example the case
of the failure generated by a non-operational antenna
during the maintenance. This case shows that having an
error does not correspond 1-to-1 to an alarm: the monitor
points in input to a component must be elaborated against
a user provided heuristic to decide case by case if a non-
nominal value in one or more of them is enough to pro-
duce an alarm for the operator. The model graph in the
right side of Figure 1, shows the nodes that are working
well in green and those in a non-nominal state in orange
or red. Such information can be used to map the infor-
mation in the model in the panels for engineers and opera-
tors as shown in the left side of the same Figure 1.

Figure 1: The schema of the alarm system.

The inputs of the IAS come in the form of values from
monitor points like a temperature sensor, or alarms gener-
ated by other alarm sources such as specialized software
systems like for example the ALMA Common Software
(ACS) or the control system of a power plant. The set of
inputs is therefore very heterogeneous: the IAS must be
able to elaborate each type of input independently of its
format and the software system who provides it. In the
scope of this document, we will call the input to the IAS
Integrated Alarm System Input/Output (IASIO), regard-
less if they are the values of monitor points or alarms, and
without distinction of the software source that produces
them.

Distributed Alarm System Unit
The core of the IAS [2] is a distributed software system

composed of Distributed Alarm System Units (DASU)
that concurrently evaluate the IASIOs in input and, if
appropriate, produce one or more alarms. Sometimes
when the translation of IASIOs into alarms is very com-
plex or several IASIOs must be correlated, the DASU
produces an intermediate value instead of an alarm. We
call such temporary value a synthetic parameter. Typical-
ly, a DASU represents the IAS model of a particular sub-
system of the observatory. For more complex subsystems,
it can also make sense to break them down into a hierar-
chy of DASUs, most likely following the natural hierar-
chy of the subsystem.

The output produced by a DASU being an alarm or a
synthetic parameter can be, in turn, the input to another
DASU, as shown in Figure 2. This design follows the
principle that the software systems that produce the
IASIOs in input to the IAS can or cannot be completely
separated. It is a central concept of this architecture the
concept that the values coming from the remote systems
and those produced by the DASU are indistinguishable. † acaproni@eso.org

‡ eschmid@eso.org

Figure 2: The DASU collaboration diagram.

It is natural to associate one DASU to each of the moni-
tored systems but it is not the only possible way to con-
nect the DASUs: the number of DASUs and their inter-
connections represents a convenient decomposition of the
real system allowing to model the observatory.

If the IASIOs in input to the DASUs are produced by
external software systems, they must be converted to the
proper format before being processed by the DASU. Such
a conversion is shown at the bottom of Figure 3 and is a
conceptual representation of this task that in the real sys-
tem will likely be done by a dedicated software tool.

Figure 3: Internal schema of the DASU.

Often, there is a big number of inputs to a DASU and it
can be challenging and error prone to correlate all the
possible values of the inputs to generate the output. For
this reason, the DASU is internally composed of one or
more Alarm System Computational Elements (ASCE)
that are software components that perform the evaluation
of the inputs, to produce in the output alarms or synthetic
parameters.

Alarm System Computational Elements
An ASCE is a software component that effectively

makes the correlation of the inputs to produce an output.
It takes as input one of more IASIOs input to the DASU,
or the output of other ASCEs running in the same DASU,
allowing to reduce the complexity of the computation of
the entire DASU.

Each ASCE has a rule to transform the inputs into the
output that can be an alarm or a synthetic parameter that
represents an intermediate step of a complex computation.
We call such rule a Transfer Function (TF), in analogy
with neural networks where a neuron transfers the values
of all its inputs to a single output. More formally, we can
say that the output O of an ASCE E with n inputs, I1...In,
is the result of applying the transfer function ∑ to its
inputs:

ܧܱ ൌ෍݅ܫ

݊

݅ൌ1

The heuristic of the transfer function of each ASCE is

provided by the operators or the engineers that have a
deep knowledge of the system; the IAS will provide a set
of predefined transfer functions to cope with the most
common use cases. This freedom to provide user defined
TFs to the IAS gives great flexibility, but user errors in
the Transfer Function could endanger the IAS at run time,
so parameters like execution time must be constantly
monitored at run-time. Each TF must be tested before
being used in production possible with the help of a simu-
lator.

The association of TFs to ASCEs is defined in the Con-
figuration Database (CDB); the same TF is reusable by
any number of ACSEs. The connection of ASCEs is acy-
clic. The number and connection of ASCEs allows to
model the hierarchy and interdependencies of real equip-
ment.

THE CORE OF THE IAS
The core of the IAS is composed of the DASUs and AS-
CEs we already saw together with other components like
the Configuration Database (CDB) and the Back-Stage
Database (BSDB), and the IASIO data structure.

All these components collaborate to evaluate the inputs
provided by the remote systems against the model and
defined rules, and ultimately generate a number of alarms,
either set or cleared. Clients of the IAS, like operator
GUIs, are notified of these alarms and display them to-
gether with additional context information, such as the
values provided by the monitored components.

The Integrated Alarm System Input/Output
The IAS architecture is based on the uniformity of the

monitor points and alarms produced by external subsys-
tems (after a proper conversion) and alarms and synthetic
parameters produced by the IAS itself. This allows the
DASU and the ASCE to have between their inputs also
values calculated by IAS components as you can see in
Figure 2.

Inputs from external systems contain several fields, in-
cluding an identifier and the current value. The identifier
uniquely identifies a IASIO inside the core of the IAS and
is not the identifier of the monitor point to the monitored
control software.

The value is the actual value of the monitor point or
alarm: it can be a numeric value, an array of values, a bit

mask, a pattern, an alarm or something else. The IAS
initially provides a basic set of types and will be extended
following a bottom up approach to support the data types
provided by the ALMA monitored control system.

A value provided by a controlled system has an associ-
ated validity that reflects possible problems that arose
while the control software retrieved the value of a monitor
point. The validity at this stage only depends on the moni-
tored system. When a value coming from remote system
is translated into a IAS data structure and injected into the
core, its validity is updated taking into account possible
problems during the computation or the delivery to the
core, like for example network problems.

The value of a monitor point is sent to the core on
change to immediately notify of updates of its value. It is
also sent at regular time intervals to reinforce its validity.
If a value does not arrive in the expected time frame, the
core marks it as invalid and it will be properly displayed
in the panels to let the operator know that the values
he/she is looking at may not reflect the actual situation.

Identifier
IASIOs, Computational Elements and DASUs and

more in general all the IAS components, have an identifi-
er that allows to uniquely identify them at run time. The
identifiers are defined in the CDB and are composed of
three parts:
 A unique identifier, ID.
 The identifier of the parent.
 A stringified representation of the identifier.
The ID is a string that uniquely distinguishes one object

from another. The identifier of the parent is the unique
identifier of the parent, making the identifier a recursive
data structure: the chain of IDs allows to quickly identify
who owns an object and where it. The stringified version
of the identifier consists of the ID plus the identifiers of
all its parents. Its purpose is to improve performance at
run-time. The recursive data structure, and the related
parent identifier, is very useful for debugging: it says for
example which ASCE produced an IASIO and in which
DASU it runs.
The Table 1 below describes a possible assignment of
parent IDs of IAS components.

Table 1: Parent Identifiers of IAS Components.

IAS Component Parent
Value from a

remote software
system

The ID of the remote software
system.

IASIO  The ASCE that produced it
 The plugin that generated

the IASIO for the value re-
ceived from a remote soft-
ware system.

DASU Nothing.
ASCE The DASU where it runs.

PLUGINS
Each monitored system has its own control software.

The control software of the ALMA array has been devel-
oped in collaboration with ALMA partners and we have
full control over it. However, other control software sys-
tems in the facility are proprietary, possibly a with limited
access that does not allow to deploy software. However,
all control software systems provide a way to get monitor
point values and alarms that can be forwarded to the IAS
and presented in the panels after processing.

We call plugins the software components that interface
with remote control software to collect and send monitor
point values and alarms to the core of the IAS.

As we said earlier, the value of each monitor point must
be sent on change and at regular time intervals. Apart of
collecting and sending the values to the core, the plugins
filter up front the alarms from flickering and other noise
so that the values received by the IAS are stable and reli-
able enough to let the IAS present coherent alarms in the
panels.

The IAS provides a library of the most commonly
needed filters to be applied by the plugins to the values; it
also provides a library to send the values to the core of the
IAS so that developing a plugin ultimately means devel-
oping the part related to the monitored software system,
reusing the tools provided by the IAS for the filtering and
sending.

We have identified the following use cases:
 The plugin can be deployed in the control software

of the monitored system: it can directly access the
monitor point values

 The plugin cannot be deployed in the control soft-
ware of the monitored system but the control soft-
ware offers an API to get monitor points.

A plugin can easily retrieve monitor point values and
alarms when it is possible to deploy it in the workspace of
a monitored control software. In that case, it can run as a
component of the control software or as client that can
directly access the internals of the system though a specif-
ic API.

Proprietary control software could be closed in this re-
spect and forbid to deploy software inside the control
system. Some of them provide an API to access the moni-
tor point values and alarms or, in the worst case, provide
web pages and logs that could be parsed.

In both cases, running a plugin must have no side effect
in the monitored system, nor in the alarm system. In par-
ticular, a plugin must not introduce instability in the
monitored system if for example the integrated alarm
system is not running or the transport framework not
available. The other way around is also true, the integrat-
ed alarm system must not be affected by a misbehaving
plugin but it must clearly report the problem in the panels.

Another key factor is the network configuration. Often
a control software runs inside a shielded private network
being inaccessible to plugins unless they run in the con-
trol software private network itself. In that case, it is often

possible to established an outgoing connection from the
control software to the integrated alarm system network.

There are many possible scenarios for getting monitor
point values and alarms from the heterogeneous remote
monitored system of ALMA. Most likely the network
configuration needs to be updated and there is the need to
buy specific products to access monitor points and values
from proprietary control software. In any case a specific
solution must be found for each case as it is not possible
to generalize a plugin to cover all possible cases.

BACK-STAGE DATABASE
To decouple plugins from the integrated alarm system,

the plugins sends monitor point and values to a back-
stage database (BSDB) instead of establishing a direct
communication with the core components IAS as shown
in Figure 4. The deployment of the BSDB may or may
not be that of Figure 4 as it can or cannot be in the same
servers of the IAS or distributed between several servers
[3].

In case the BSDB is not available, the plugins stop
sending data until the BSDB will be available again. All
the monitor point values and alarms collected when the
BSDB is unavailable are lost forever. This is not a big
deal as each value will be resent after a defined time in-
terval: when the BSDB will be available again, the updat-
ed value will be sent automatically and propagated up to
the operator panels.

Figure 4: Communication between plugins and IAS core.

In the selection of the transport system we considered
also the fact that each monitor point value and alarm has a
validity: when a value is too old to be reliable it is marked
as invalid to make the operator aware that what he/she
sees in the alarm panel may not reflect the real state of the
underlying components. There is no point to save monitor
point and values for long time in the BSDB.

At the same time, the back-stage database must be fast
enough to ensure the delivery of monitor point and alarms
in a short time: a non-nominal state detected in a remote
monitored system must be notified to operators not later
the 2 seconds later.

The BSDB of the IAS adopts the Apache Kafka distrib-
uted platform for collecting and propagating monitor
point values and alarms collected by the plugins to the
core and the alarms and synthetic parameters produced by

ASCEs and DASUs to other components of the core and
up to the web server and operator/engineering panels.

Kafka offers many advantages being very fast, distrib-
uted and replicated. Kafka also automatically discards the
records older than a certain age, a concept that matches
the design of the IAS.

DATA FLOW
Figure 5 shows a logical view of the data flow inside

the core of the IAS for the simplified case of a single
monitored system and one DASU with 2 ASCEs.

The external software system on the top left side pro-
duces monitor points and alarms that are collected and
sent (1) by the plugin to the temporary queue T. Monitor
point values and alarms stored in T need to be converted
into IAS data structures before being injected in the core.

Such a conversion happens in (2) where dedicated
software tool extracts the records from the temporary T
queue, and translates them into IASIO objects to be final-
ly stored into the IOs queue.

The number and deployment of the T and IOs queues
depends on the framework adopted, but in principle there
should be one T queue for each remote software system to
reduce the load on the converters; for the same reason,
more than one IOs queue could be deployed.

Figure 5 also shows one DASUs with two ASCEs. The
inputs of the ASCEs are IASIOs that come from the IOs
queue (4). The output produced by the DASUs, of IASIO
type, are in turn stored into the IOs queue (3) to be propa-
gated from there to other DASUs (not shown in the pic-
ture). From the picture it is clear that monitor point values
delivered by plugins, after conversion, and IASIOs pro-
duced by ASCEs are indistinguishable and processed the
same way.

Data extracted from T and IOs queues are immediately
discarded: the standard way a client has to be informed
about IASIOs updates is by subscribing to the events
produced by the publishers attached to the IOs queue(s).

Apart of DASU and ASCE, there are other consumers
connected to the IO queues like the one to store IASIOs in
the Long Term database (LTDB) for permanent storage,
or the consumer to inject IASIOs in the web servers to be
finally visible in the operator and engineering panels.

OPERATOR AND ENGINEERING
PANELS

The primary function of the integrated alarm system is
to show the high-level status and alarm information panel
of all the main monitored systems of the ALMA observa-
tory like for example the ALMA Antenna Array, the
weather stations, the power plant, allowing the operator to
identify the area of a problem in case of a non-nominal
situation.

In the system displays, each element summarizes the
overall status of a system with a proper colour coding.
Once an element is an abnormal status, the operator will
be able to navigate to a new display in order to see the

status of the sub-elements and identify the root cause of
the problem. Depending on the complexity of the moni-
tored element, it might be necessary to have several levels
of displays showing more details of each element.

Figure 5: IAS data flow.

The panels of the alarm system are primarily displayed

in the ALMA control room for the telescope operators.
The operators in the control rooms are those who detect
an alarm and start the counter action and are the only ones
allowed to send commands to the alarm system like for
example acknowledging or shelving alarms for a given
time intervals.

Engineers, usually outside of the control room, are also
interested in displaying alarm panels with dedicated views
to the equipment they are responsible for.

Other users may want to check the state of the observa-
tory from their premises in Europe, the USA or Japan.
Such users are allowed to check the state but cannot inter-
act with the alarm system.

To allow users to open alarms panel from the control
room and many other places, the alarm panels are dis-
played in a browser once the user credentials have been
checked.

Internally, the web server gets the IASIOs produced by
ASCEs directly from the BSDB and forwards them to the
panels with the proper layout and colour coding, as shown
in Figure 6.

Figure 6: Operator and engineer panels.

Operator actions, like acknowledging and shelving
alarms are handled entirely by the web servers and rec-
orded in the long-term database.

The Integrated Alarm System will provide also other
panels for the management of the alarm system itself.
Such interfaces could be developed as web application or
be dedicated Python or Java tools.

Displaying alarms for a complex environment like the
ALMA observatory is not an easy task. Sometimes, espe-
cially for engineering panels, a simple tabular view could
suffice but for the operators in control room there is the
need to more complex and interactive panels. For exam-
ple, a panel displaying an alarm that requires an urgent
intervention in one of the 66 antennas shall clearly show
the antenna but also in which of the 200 possible pads the
antenna is located and how to reach the pad. For this kind
of panels the geolocation is an important factor.

For such a complex task, we made a workshop [4] with
the participation of human machine interaction experts
from Inria Chile and with the involvement of operators,
engineers and software developers. During the workshop,
we identified the most important systems to monitor that
will always be shown in a panel independently if are in a
nominal or non-nominal state. In case of alarm, the entry
in the main panel shows the system in non-nominal state
and with a proper color coding. To understand the root
cause of the problem, the operator must click over to open
a sub-panel that shows a detailed view of the monitored
system.

Inria human machine interaction experts prepared a de-
tailed report of the outcome of the workshop and provided
mock-up interfaces one of which is in Figure 7. It shows
the antenna and the technical buildings located at the
ALMA Observatory facility at 3000m a.s.l. and the facili-
ty building located at 5000m a.s.l. at the right side. Items
in a non-nominal state are those in red. The final design
of this interface can substantially differ from that in pic-
ture Figure 7.

Apart of operator and engineer panels there will be sev-
eral technical panels and tools to investigate the behav-
iour of the alarm system at run-time and offline. Such
panels allow, among the others, to identify cheating
alarms and other noise [5].

ALARM CONFIGURATION AND
DOCUMENTATION

The Integrated Alarm System is primarily an applica-
tion for the operators in the control room. They have the
responsibility to check the alarms and start the counter
action but they are also those who better know the inter-
nals of the observatory for finding the best possible coun-
ter actions. This consideration makes the operators, to-
gether with engineers, the best suitable person to priori-
tize and provide documentation for the alarms.

We are going to introduce the new tool following a top
down approach. We identify few important and reliable
alarms and display only them; when they prove to work
as expected and the operators trust the new alarm system
we will increase the number of displayed. The operators
must help finding the documentation but also defining the
transfer function to manipulate the inputs.

The integrated alarm system will offer to operators a
way to write and keep up to date the documentation of
each alarm with the possibility to add text, pictures and
video clip. One possible solution could be to let the alarm
panel provide each displayed alarm with a link to a doc-
umentation editable page like for example a wiki page.

CONCLUSION
To increase the efficiency of the ALMA observatory we

found that the operators in the control room need an alarm
system showing not only the alarms produced by the
array control software but also those coming from other
control software like the weather station or the power
plant. Those alarms increase the situational awareness of

the operators and allow them to tackle a problem possibly
before it affects observations.

Such tool, the integrated alarm system, must be able to
accept in input monitor point values and alarms coming
from a set of heterogeneous control software systems. The
IAS elaborates the inputs and produces the alarms, dis-
played by a set of panels, to operators and engineers in
the control room or seated in the offices in their premises.

A set of plugins, each of which closely depend on the
monitored system, retrieves monitor points and alarms
from the control software and, after removing any noise
with a proper filtering, sends them to the core of the IAS.
The values provided by the control software need to be

converted into a uniform data type to be elaborated by the
core.

The core elaborates the inputs against a model to pro-
duce a set of alarms to be shown to operators and engi-
neers. We have found that each monitored system has a
hierarchical structure that can be modelled with an acyclic
graph whose nodes represent the components of the sys-
tem. Each node can be working as expected or in a non-
nominal state. The IAS maps each node to an element in
the alarm panels. We defined the IAS software architec-
ture mapping the nodes into DASUs and allowing to
decompose the elaboration of a great number of inputs in
the ASCEs by applying to them a transfer function.

The IAS provides the most important transfer functions
to transform the inputs into alarms, but it is possible to
define custom functions to implement specific rules
whose definition must be found in close collaboration
with operators and engineers who have the deepest
knowledge of the system.

During a workshop with human machine interaction
experts from Inria Chile, and in collaboration with devel-
opers, operators and engineers, we have identified the

Figure 7: Mock-up interface for the alarms generated by the building infrastructure of the ALMA observatory.

most important elements to show in the control room and
created mock up panels for display panels.

The IAS is currently under development, available un-
der LGPL license. It is hosted in Github [6] [7].

REFERENCES
[1] E.Schmid, “Integrated Alarm System for the ALMA Obser-

vatory, ESO-287159”, Design report, 2016.
[2] A.Caproni, E.Schmid, Integrated Alarm System Architec-

ture, ESO-293482 Design report, 2017.
[3] A.Caproni, E.Schmid, “Integrated Alarm System Design,

ESO-299387, Design report”, 2017.
[4] Technical report – Integrated Alarm System UI Front-End

Workshop, Inria, Chile. 2016.
[5] B.R. Hollifield and E. Habibi, “Alarm management: seven

effective methods for optimum performance”, ISA Re-
search Triangle Park, NC, USA: 2007.

[6] Integrated Alarm System website,
https://integratedalarmsystem-
group.github.io/

[7] Integrated Alarm System on github,
https://github.com/IntegratedAlarmSystem-
Group

<<
 /ASCII85EncodePages true
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ABSALOM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /ALIBI
 /AllegroBT-Regular
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BankGothicBT-Medium
 /BaskOldFace
 /Batang
 /BATAVIA
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CASMIRA
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /ELEGANCE
 /Elephant-Italic
 /Elephant-Regular
 /ELLIS
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EXCESS
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /GENUINE
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HELTERSKELTER
 /HERMAN
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /ISABELLE
 /JOAN
 /Jokerman-Regular
 /JuiceITC-Regular
 /JUSTICE
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MANDELA
 /Mangal-Regular
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MATTEROFFACT
 /MaturaMTScriptCapitals
 /MICRODOT
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MT-Extra
 /MVBoli
 /NATURALBORN
 /NEOLITH
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OPENCLASSIC
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PRETEXT
 /Pristina-Regular
 /PUPPYLIKE
 /Raavi
 /RADAGUND
 /RageItalic
 /Ravie
 /REALVIRTUE
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /SHELMAN
 /ShowcardGothic-Reg
 /Shruti
 /SimSun
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TRENDY
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENG ()
 /ENU (Setup for JACoW - paper size, embed all fonts, compression, Acrobat 7 compatibility.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.000 791.000]
>> setpagedevice

